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Overview

Lattice QFT

Path integral formalism of QM/QFT
Euclidean vs. Minkowski path integral
Lattice: Discretized spacetime
Gauge invariance on the lattice: Wilson loop
Fermions in lattice QFT

Numerical techniques: Monte Carlo

Computational requirements
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Hadron spectrum from lattice QCD

Black bars are the experimental values. Different color dots are various
lattice QCD results. [Blum et al, 2013]
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The Path Integral Formalism

Time-slices: ii = t0 < t1 < · · · < tN = tf .

Transition amplitude 〈tf , xf | ti , xi 〉 is expressible as a path integral
over all particle configurations:∫

e iS[x]Dx =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

(
i

∫ tf

ti

L(x(t), ẋ(t))dt

)
dx0 · · · dxN

For fields we partition the spacetime manifold which induces a
partition in the field configuration space. This gives us the path
integral formulation for n-point functions:

〈φ(x1) · · ·φ(xn)〉 =

∫
e iS[φ]φ(x1) · · ·φ(xn)Dφ∫

e iS[φ]Dφ
= see next page

This is the basic idea of lattice QFT!
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Lattice: Discrete Partitioning of Finite Spacetime Volume

To put our QFT on a computer we must confine to a finite spacetime
volume. This finite volume is partitioned by a finite number of lattice
points. The path integral becomes:∫

Dφ e iS[x] =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

(
i

∫
V
L(φ(xµ))d4xµ

)∏
i

dφ(xµi )

As the lattice spacing becomes zero this should approximate the
continuous QFT value. This is how we define QFT on a lattice!

[From: web.ma.utexas.edu]
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Euclidean Path Integral

e iS is highly oscillatory and therefore numerically unstable.

To regularize it we Wick-rotate to Euclidean spacetime and compute
e−S .

If we ever need to compare with Minkowski n-point function we
simply Wick-rotate the Euclidean n-point function back to Minkowski
spacetime at the end of the lattice calculation.

[From: Ori Yudilevich, Calculating Massive One-Loop Amplitudes in QCD]
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Example: SU(n) Gauge Theory

Criteria for a successful lattice implementation: (in increasing order of
importance!)

Regularity: the theory is completely finite since everything is
regularized by the finite lattice spacing (UV) and finite lattice volume
(infrared).

Gauge invariance: we will see how gauge invariance is implemented in
the Wilson theory in the next slide.

Unitarity! Often taken for granted but is the most important.

Poincare symmetry is broken (obviously!) and is reduced to a finite
subgroup: the symmetry group of the lattice. This includes the discrete
translation symmetry and rotations in the four-dimensional hypercubic
group.
The usual C, P, T symmetries are still good!
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Gauge Theory: Fiber Bundles on a Manifold

Gemoetric analogy with General Relativity.

Connection on a principal SU(n) bundle (a special fiber bundle with
the Lie group SU(n) as the fibers) is the gauge fields Aµ

i
j . Here i

and j are bundle indices.

Curvature on the principal SU(n) bundle gives us the force fields
Fµν

i
j .

In GR, curvature is defined as the change of a unit vector parallel
transported along a unit loop.

This analogy gives us the Wilson loop which implements gauge
invariance in a lattice theory.
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Wilson Loop

The simplest guess: going around a unit loop (a “plaquette”) in the lattice
space.

Sg =
6

g2

∑
x ,µ,ν

[
1− 1

3
<
[
trUµ(x)Uν(x + aµ̂)U†µ(x + aν̂)U†ν(x)

]]
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Wilson Loop

In the continuous limit a→ 0, expanding in powers of a using

U(x) = exp (iaAµ(x))

and replacing the sum with an integral, one finds

Sg →
∫

d4x
1

4g2
tr [Fµν(x)Fµν(x)]

This is precisely the action for a SU(n) guage theory! Here

Fµν = ∂[µAν] + i [Aµ,Aν ]

is the gauge force field. Note we have suppressed the bundle indices.
Including bundle indices we have∑

ij

Fµν
i
jF

µν j
i etc.
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Fermions in Lattice QFT

The Fermion doubling problem: A naive Fermion action

Dµq(x)→ 1

2a

[
Uµ(x)q(x + aµ̂)− Uµ(x − aµ̂)†q(x − aµ̂)

]
has two copies of fermions in the continuum limit.

The Nielsen-Ninomiya theorem states that this is always the case. In
d spacetime dimensions we get 2d copies of fermions.

A number of strategies to deal with this. See [Knechtli, Günther,
Peardon 2017] for more details.
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Numerical techniques: Monte Carlo

The simplest Monte Carlo algorithm: To compute

I =

∫
Ω
f (~x) vol

where Ω is a region in Rm, ~x a vector, and vol is the integral measure
in Rm (Here m is very large!), we need the following

1 Generate N random sample points {~x1, . . . ,~xN} from a uniform
distribution on Ω.

2 Compute

QN =
V

N

N∑
i=1

f (~xi )

3 In the limit N →∞ we have

lim
N→∞

QN = I
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Computational Resources

Lattice QCD is an extremely computationally intense program
consisting primarily of matrix operations.

These highly parallel computations are not suitable for CPUs which
are more suited for branching operations (if-then-else statements).

A relatively small scale program can be run on a GPU [R Babich
2011, B Joó 2012, 1612.07873, lattice.github.io/quda].

Larger scale simulations require supercomputers [TOP500]. These are
clusters of computer nodes connected by high-speed links capable of
running large numbers of tasks in parallel.
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